Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Angewandte Chemie ; n/a(n/a), 2021.
Article in English | Wiley | ID: covidwho-1381838

ABSTRACT

The direct visualization of vaccine fate is important to investigate its immunoactivation process in order to elucidate the detailed molecular reaction process at single-molecular level. Yet, visualization of the spatiotemporal trafficking of vaccines remains poorly explored. Here, we show that quantum dot (QD) nanomaterials allow for monitoring vaccine dynamics and for amplified immune response. Synthetic QDs enable efficient conjugation of antigen and adjuvants to target tissues and cells, and non-invasive imaging the trafficking dynamics to lymph nodes and cellular compartments. The nanoparticle vaccine elicits potent immune responses and anti-tumor efficacy alone or in combination with programmed cell death protein 1 blockade. The synthetic QDs showed high fluorescence quantum yield and superior photostability, and the reliable and long-term spatiotemporal tracking of vaccine dynamics was realized for the first time by using the synthetic QDs, providing a powerful strategy for studying the immune response and for evaluating the vaccine efficacy.

2.
ACS Sens ; 6(3): 1086-1093, 2021 03 26.
Article in English | MEDLINE | ID: covidwho-1120724

ABSTRACT

The outbreak of COVID-19 caused a worldwide public health crisis. Large-scale population screening is an effective means to control the spread of COVID-19. Reverse transcription-polymerase chain reaction (RT-qPCR) and serology assays are the most available techniques for SARS-CoV-2 detection; however, they suffer from either less sensitivity and accuracy or low instrument accessibility for screening. To balance the sensitivity, specificity, and test availability, here, we developed enhanced colorimetry, which is termed as a magnetic pull-down-assisted colorimetric method based on the CRISPR/Cas12a system (M-CDC), for SARS-CoV-2 detection. By this method, SARS-CoV-2 RNA from synthetic sequences and cultured viruses can be detected by the naked eye based on gold nanoparticle (AuNP) probes, with a detection limit of 50 RNA copies per reaction. With CRISPR/Cas12a-assisted detection, SARS-CoV-2 can be specifically distinguished from other closely related viruses. M-CDC was further used to analyze 41 clinical samples, whose performance was 95.12%, consistent with that of an approved Clinical RT-qPCR Diagnosis kit. The developed M-CDC method is not dependent on sophisticated instruments, which makes it potentially valuable to be applied for SARS-CoV-2 screening under poor conditions.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , RNA, Viral/analysis , SARS-CoV-2/genetics , Bacterial Proteins , CRISPR-Associated Proteins , CRISPR-Cas Systems , Cell Line, Tumor , Colorimetry , DNA/chemistry , DNA Probes , Endodeoxyribonucleases , Gold/chemistry , Humans , Metal Nanoparticles/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL